Специалисты факультета компьютерных наук НИУ ВШЭ и Лаборатории искусственного интеллекта Сбера разработали геометрический метод расширения данных — Simplicial SMOTE. Тесты на разных наборах данных показали, что он значительно улучшает качество работы AI. Метод особенно полезен в ситуациях, когда редкие случаи очень важны, например в борьбе с мошенничеством или при диагностике редких болезней. Результаты исследования доступны в открытом архиве Arxiv.org и будут представлены на Международной конференции по обнаружению знаний и анализу данных (KDD) летом 2025 года в Торонто.