• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 125319, г. Москва, 
Кочновский проезд, д. 3 (станция метро "Аэропорт").

Телефон: +7 (495) 772-95-90 *12332

Email: computerscience@hse.ru

 

Руководство

Декан Аржанцев Иван Владимирович

Первый заместитель декана Вознесенская Тамара Васильевна

Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович

Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич

Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна

Мероприятия
17 июня – 22 июня
Ранняя регистрация: до 15 апреля Закрытие регистрации: 15 мая 
1 июля – 10 июля
Прием заявок — до 21 апреля 
26 августа – 6 сентября
Регистрация – до 12 мая 
26 августа – 30 августа
Registration and Poster Submission deadline — May 1, 2019 
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/80/15
110 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
70/12
70 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/70/15
80 бюджетных мест
70 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
On the prediction loss of the lasso in the partially labeled setting

Bellec P., Dalalyan A., Grappin E. et al.

Electronic journal of statistics. 2018. Vol. 12. No. 2. P. 3443-3472.

Статья
On the Structure of Ammann A2 Tilings
В печати

Durand B., Shen A., Vereshchagin N.

Discrete and Computational Geometry. 2019. P. 1-30.

Статья
Ontology–based access to temporal data with ontop: a framework proposal

Zakharyaschev M. et al.

International Journal of Applied Mathematics and Computer Science. 2019. Vol. 29. No. 1. P. 17-30.

Практические задачи машинного обучения

Преподаватель: Денис Симагин. Выпускник ФКН, разработчик в команде Яндекс.Карты.

Факультатив познакомит слушателя с задачами машинного обучения. Курс носит прикладной характер —он предполагает введение базовых понятий для трех разделов: обучение с учителем, обучение с подкреплением и обучение без учителя. Современные модели и подходы обучения будут рассмотрены сквозь призму решения реальных проблем. Будет проведено подробное сравнение популярных библиотек и инструментов, а для закрепления материала будет предложено обучить модели для упрощенных задач.

Курс сформирует понимание, в какую сторону сейчас развивается машинное обучение и, возможно, поможет определиться с направлением для дальнейших исследований.

Для прохождения понадобится стандартная математическая база, знания теории вероятностей и навык разработки на Python3.

Необходимо рассчитывать на интенсивную самостоятельную работу.
Программа

Расписание:
по четвергам с 16.40 до 19.30
24.01 - ауд. 317
с 31.01 по 21.03 - ауд. 622 - 3 модуль
28.02 - аудитория 219 (один раз)
с 04.04 по 13.06 - ауд. 622 - 4 модуль
16 мая - в ауд. 435