• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 125319, г. Москва, 
Кочновский проезд, д. 3 (станция метро "Аэропорт").

Телефон: +7 (495) 772-95-90 *12332

Email: computerscience@hse.ru

 

Руководство

Декан Аржанцев Иван Владимирович

Первый заместитель декана Вознесенская Тамара Васильевна

Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович

Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич

Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна

Мероприятия
17 июня – 22 июня
Ранняя регистрация: до 15 апреля Закрытие регистрации: 15 мая 
1 июля – 10 июля
Прием заявок — до 21 апреля 
26 августа – 6 сентября
Регистрация – до 12 мая 
26 августа – 30 августа
Registration and Poster Submission deadline — May 1, 2019 
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/80/15
110 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
70/12
70 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/70/15
80 бюджетных мест
70 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
On the prediction loss of the lasso in the partially labeled setting

Bellec P., Dalalyan A., Grappin E. et al.

Electronic journal of statistics. 2018. Vol. 12. No. 2. P. 3443-3472.

Статья
On the Structure of Ammann A2 Tilings
В печати

Durand B., Shen A., Vereshchagin N.

Discrete and Computational Geometry. 2019. P. 1-30.

Статья
Ontology–based access to temporal data with ontop: a framework proposal

Zakharyaschev M. et al.

International Journal of Applied Mathematics and Computer Science. 2019. Vol. 29. No. 1. P. 17-30.

Дополнительные главы математической статистики

Преподаватель

Шабанов Дмитрий Александрович

Преподаватель факультатива

Расписание

по вторникам с16.40 до 18.00
с 22.01 по 19.03 — ауд. 505
с 02.04 по 11.06 — ауд. 505

Программа факультатива

Цель освоения дисциплины «Дополнительные главы математической статистики» — познакомить слушателей с понятиями, фактами и методами математической статистики, не вошедшими в базовый курс «Теория вероятностей и математическая статистика», а также с различными возможными приложениями для статистической обработки реальных данных. 

В результате освоения дисциплины студент должен:

  • Знать основные понятия математической статистики, их основные результаты и математические методы анализа. 
  • Уметь применять математические методы и модели к анализу случайных явлений  для их адекватного описания и понимания. 
  • Владеть навыками решения стандартных задач математической статистики, а также применением основных аналитических инструментов для анализа вероятностных и статистических задач.