• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 167005, г. Москва, Покровский бульвар, д. 11.

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/100/15
110 бюджетных мест
100 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
90/12
90 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/120/15
80 бюджетных мест
120 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Infinite transitivity, finite generation, and Demazure roots

Arzhantsev I., Kuyumzhiyan K., Zaidenberg M.

Advances in Mathematics. 2019. Vol. 351. P. 1-32.

Статья
Bias in False Discovery Rate Estimation in Mass-Spectrometry-Based Peptide Identification

Sulimov P., Voronkova A., Danilova Y. et al.

Journal of Proteome Research. 2019. Vol. 18. No. 5. P. 2354-2358.

Статья
Compression of recurrent neural networks for efficient language modeling

Grachev A., Ignatov D. I., Savchenko A.

Applied Soft Computing Journal. 2019. Vol. 79. P. 354-362.

Глава в книге
Numerical Pattern Mining Through Compression

Makhalova T., Kuznetsov S., Napoli A.

In bk.: 2019 Data Compression Conference Proceedings. IEEE, 2019.

Состоялся интенсив для преподавателей НИУ ВШЭ в рамках проекта Data Culture

14 и 15 июня в Московском офисе Яндекса состоялся интенсив для преподавателей и сотрудников НИУ ВШЭ, заинтересованных в тематике Data Science. Двухдневный цикл занятий проходил в рамках проекта Data Culture и был нацелен на подготовку преподавателей университета к участию в проекте.
За 2 дня более 100 человек со всех факультетов московского кампуса, а также сотрудники Санкт-Петербургского и Пермского кампусов — от преподавателей профильных предметов до академических руководителей программ и сотрудников дирекции основных образовательных программ — приняли участие в интенсиве, который провели специалисты по анализу данных факультета компьютерных наук.
Дмитрий Ветров, профессор-исследователь департамента больших данных и информационного поиска (ДБДИП) и заведующий Международной лабораторией глубинного обучения и байесовских методов, рассказал о том, как современные методы машинного обучения и искусственного интеллекта меняют подходы во многих областях науки, и почему владение основами этих методов становится частью общей научной культуры исследователя вне зависимости от конкретной предметной области.
Евгений Соколов, заместитель руководителя ДБДИП и ведущий специалист по анализу данных в Яндексе, посвятил свои лекции основным понятиям и методам машинного обучения, а также автоматизации процессов в науке и бизнесе при помощи машинного обучения.
 
Картинки по запросу евгений соколов вшэ
Евгений Соколов
Заместитель руководителя департамента
больших данных и информационного поиска
За последние десять лет во многих областях накопились огромные объёмы данных — благодаря удешевлению хранения, распространению цифровых технологий, интернета, социальных сетей и так далее.
Если раньше мало кто задумывался о возможностях извлечения практической пользы из данных, и для решения таких задач было достаточно небольшого числа профессионалов, то сейчас потребность в анализе данных возникает повсеместно. Сегодня появляются всё новые приложения методов машинного обучения в экономике, социологии, юриспруденции, политологии, лингвистике, психологии. Во всех областях, по крайней мере для базовых задач, используется один и тот же инструментарий, одни и те же методы и технологии, — поэтому следующим этапом развития анализа данных мы видим освоение его основных методов специалистами в предметных областях — тогда эксперты в области машинного обучения смогут сосредоточиться на улучшении инструментов и разработке новых алгоритмов.


 
В заключительной лекции от преподавателя ДБДИП Надежды Чирковой были рассмотрены задачи анализа и генерации текстовой информации с учётом словоформ и согласованности текстов.
 

Интенсив порадовал. Почему? — непосвященному гуманитарию казалось, что BIG DATA — это не только страшно интересно и ново, но и просто страшно. На интенсиве стало понятно, что по факту их основы вписываются в математическую статистику, что само по себе обнадеживает — значит, студенты гуманитарных направлений вполне смогут понять и даже пользоваться достижениями современных информационных технологий.

Энтина Екатерина Геннадьевна
Департамент международных отношений: Доцент

Интенсив был организован при поддержке Центра повышения квалификации. Записи лекций и презентации доступны по ссылке.