• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по учебно-методической работе — Самоненко Илья Юрьевич

 

Заместитель декана по развитию и административно-финансовой работе — Плисецкая Ирина Александровна

Мероприятия
22 февраля – 23 февраля
Регистрация открыта 
21 марта – 23 марта
Прием статей до 15 января 2019 
12 июня – 14 июня
submission: Friday, 01 February 2019, notification: Friday, 15 February 2019 
26 августа – 30 августа
Registration and Poster Submission deadline — April 1, 2019 
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/80/15
110 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
70/12
70 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/70/15
80 бюджетных мест
70 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы оптимизации и стохастики

2 года
Очная форма обучения
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Ontology-Mediated Queries: Combined Complexity and Succinctness of Rewritings via Circuit Complexity

Bienvenu M., Kikot S., Kontchakov R. et al.

Journal of the ACM. 2018. Vol. 65. No. 5. P. 28:1-28:51.

Статья
Randomized Block Cubic Newton Method
В печати

Doikov Nikita, Richtarik P.

Proceedings of Machine Learning Research. 2018. No. 80. P. 1290-1298.

Статья
Particle-identification techniques and performance at LHCb in Run 2
В печати

Hushchyn M., Chekalina V.

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018. P. 1-2.

Статья
Observational evidence in favor of scale free evolution of sunspot groups

Shapoval A., Le Mouël J., Shnirman M. et al.

Astronomy and Astrophysics. 2018. Vol. 618. P. A183-1-A183-13.

Состоялся интенсив для преподавателей НИУ ВШЭ в рамках проекта Data Culture

14 и 15 июня в Московском офисе Яндекса состоялся интенсив для преподавателей и сотрудников НИУ ВШЭ, заинтересованных в тематике Data Science. Двухдневный цикл занятий проходил в рамках проекта Data Culture и был нацелен на подготовку преподавателей университета к участию в проекте.
За 2 дня более 100 человек со всех факультетов московского кампуса, а также сотрудники Санкт-Петербургского и Пермского кампусов — от преподавателей профильных предметов до академических руководителей программ и сотрудников дирекции основных образовательных программ — приняли участие в интенсиве, который провели специалисты по анализу данных факультета компьютерных наук.
Дмитрий Ветров, профессор-исследователь департамента больших данных и информационного поиска (ДБДИП) и заведующий Международной лабораторией глубинного обучения и байесовских методов, рассказал о том, как современные методы машинного обучения и искусственного интеллекта меняют подходы во многих областях науки, и почему владение основами этих методов становится частью общей научной культуры исследователя вне зависимости от конкретной предметной области.
Евгений Соколов, заместитель руководителя ДБДИП и ведущий специалист по анализу данных в Яндексе, посвятил свои лекции основным понятиям и методам машинного обучения, а также автоматизации процессов в науке и бизнесе при помощи машинного обучения.
 
Картинки по запросу евгений соколов вшэ
Евгений Соколов
Заместитель руководителя департамента
больших данных и информационного поиска
За последние десять лет во многих областях накопились огромные объёмы данных — благодаря удешевлению хранения, распространению цифровых технологий, интернета, социальных сетей и так далее.
Если раньше мало кто задумывался о возможностях извлечения практической пользы из данных, и для решения таких задач было достаточно небольшого числа профессионалов, то сейчас потребность в анализе данных возникает повсеместно. Сегодня появляются всё новые приложения методов машинного обучения в экономике, социологии, юриспруденции, политологии, лингвистике, психологии. Во всех областях, по крайней мере для базовых задач, используется один и тот же инструментарий, одни и те же методы и технологии, — поэтому следующим этапом развития анализа данных мы видим освоение его основных методов специалистами в предметных областях — тогда эксперты в области машинного обучения смогут сосредоточиться на улучшении инструментов и разработке новых алгоритмов.


 
В заключительной лекции от преподавателя ДБДИП Надежды Чирковой были рассмотрены задачи анализа и генерации текстовой информации с учётом словоформ и согласованности текстов.
 

Интенсив порадовал. Почему? — непосвященному гуманитарию казалось, что BIG DATA — это не только страшно интересно и ново, но и просто страшно. На интенсиве стало понятно, что по факту их основы вписываются в математическую статистику, что само по себе обнадеживает — значит, студенты гуманитарных направлений вполне смогут понять и даже пользоваться достижениями современных информационных технологий.

Энтина Екатерина Геннадьевна
Департамент международных отношений: Доцент

Интенсив был организован при поддержке Центра повышения квалификации. Записи лекций и презентации доступны по ссылке.