• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
ФКН
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
117/80/30
117 бюджетных мест
80 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
80/12
80 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
110/70/30
110 бюджетных мест
70 платных мест
30 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Магистр по наукам о данных

2 года
Заочная
100
100 платных мест
ENG
Обучение ведётся на английском языке
Магистерская программа

Науки о данных

2 года
Очная форма обучения
60/15/20
60 бюджетных мест
15 платных мест
20 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/15
25 бюджетных мест
5 платных мест
15 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/1
35 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Глава в книге
Learning to Route in Similarity Graphs

Baranchuk D., Persiyanov D., Sinitsin A. et al.

In bk.: International Conference on Machine Learning (ICML 2019). PMLR, 2019. P. 475-484.

Статья
Spherical and geodesic growth rates of right-angled Coxeter and Artin groups are Perron numbers

Talambutsa A., Kolpakov A.

Discrete Mathematics. 2020. Vol. 343. No. 3.

Глава в книге
ChronosDB in Action: Manage, Process, and Visualize Big Geospatial Arrays in the Cloud

Rodriges Zalipynis R. A.

In bk.: Proceedings of the ACM SIGMOD International Conference on Management of Data. NY: ACM, 2019. P. 1985-1988.

Глава в книге
Multi-Agent Pathfinding with Continuous Time

Andreychuk A., Yakovlev K., Atzmon D. et al.

In bk.: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019). International Joint Conferences on Artificial Intelligence, 2019. P. 39-45.

«Остановился на Вышке и не прогадал», — делятся выпускники программы профессиональной переподготовки Центра непрерывного образования

16 ноября состоялись защиты квалификационных работ на программе профессиональной переподготовки «Современный анализ данных, глубокое обучение и приложения», которую изучали слушатели Центра непрерывного образования факультета компьютерных наук НИУ ВШЭ. Как предсказать поломку оборудования, раскрасить чёрно-белый фильм или порекомендовать пользователю недвижимость для приобретения — эти и другие проекты были представлены на защитах.

«Остановился на Вышке и не прогадал», — делятся выпускники программы профессиональной переподготовки Центра непрерывного образования

Данная группа проходила обучение по программе «Современный анализ данных, глубокое обучение и приложения» с сентября 2018 года. Это уже второй выпуск программы. Следующая группа стартует в феврале 2020 года. 

В рамках программы «Современный анализ данных, глубокое обучение и приложения» слушатели изучают математику для анализа данных, Python как язык разработки и как инструмент для анализа данных, машинное обучение и анализ больших данных с Apache Spark. Также в программе много внимания уделяется прикладным задачам машинного обучения, включая анализ социальных сетей, компьютерное зрение, нейронные сети и глубокое обучение. 

Такая программа позволяет обучить «с нуля» основам машинного обучения и анализа данных, дать математическую и алгоритмическую подготовку и научить всем необходимым навыкам для трудоустройства на позицию junior data scientist. В конце обучения все слушатели защищают квалификационную работу, которая представляет собой полноценное исследование в области Data Science и может быть включена в портфолио.

Мы попросили слушателей рассказать про свое обучение на программе и итоговый проект.



Михаил Арк, ML-специалист в ФармХаб, выпускник Московского финансово-юридического университета МФЮА по специальности «Менеджмент организации». Выполнял итоговый проект по теме «Использование seq2seq архитектур в задаче модернизации языка (генерации современной формы слова по его древней форме)»:

Изучив, что предлагается на рынке образования в анализе данных, остановился на Вышке и не прогадал. Учили нас активные практики, поэтому не сухо, но и без воды, как бывает в обычной университетской программе. Всегда можно очно задать любой вопрос, которых в процессе обучения появится много, — в этом преимущество перед онлайн платформами. 

Дизайн программы требует доработки, тем не менее уже после первого полугодия я нашел работу ML-специалистом, не имея бекграунда в IT, что, на мой взгляд, свидетельствует о достойном качестве программы.

В качестве выпускного проекта я сделал нейронную сеть, которая модернизирует древнерусские и древнеанглийские слова, переводит их в современную форму. Пайплайн может помочь историкам, но я ещё планирую научить машину наоборот состаривать современные слова, так что работа не заканчивается и после завершения обучения!



Владимир Барышев, аналитик данных в ПАО Сбербанк. Выполнял проект по теме «End-to-end нейросетевые признаки для задачи ранжирования»:

На мой взгляд, «Современный анализ данных» — это насыщенная программа с разносторонними модулями: от теоретических «подкапотных» инсайтов об ML-алгоритмах до практических навыков промышленного использования. 

Современные нейросетевые фреймворки позволяют перевести данные разной природы в единое многомерное векторное пространство. Это дает возможность оптимизировать поисковую выдачу, повысить кликабельность объявлений и выявить неочевидные зависимости в данных. В рамках итогового проекта мы с научным руководителем решали задачу ранжирования — необходимо было оптимизировать выдачу объявлений по жилой недвижимости. В результате исследования мы предложили подход к построению факторов для ранжирования объявлений с использованием как данных об объектах (описание, изображение и табличные данные), так и данных о поведении пользователей на сайте и их профилей




Андрей Бугаенко, руководитель направления по исследованию данных департамента Финансов ПАО Сбербанка. Выпускник Московского государственного университета при правительстве РФ по специальности «Финансы и кредит» и Российской экономической школы, магистр финансов. Выполнял итоговый проект по теме «Применение машинного обучения для анализа бизнес-процессов банка»:

Преподаватели программы, помимо актуального теоретического материала, давали много практики, которую можно было легко применить на работе для реальных задач. Мой дипломный проект был посвящен применению машинного обучения для задачи оптимизации бизнес-процессов в банке. В работе были использованы методы reinforcement learning (обучения с подкреплением) для определения оптимального пути в сетевом графе бизнес-процесса, а также методы машинного обучения, глубинного машинного обучения и обработки естественного языка. Все эти направления в полном объёме изучались на программе.


Председатель комиссии по итоговой аттестации Михаил Бурцев, к.ф.-м.н., руководитель проекта iPavlov, также поделился впечатлениями:

На защите был достаточно высокий уровень работ. Приятно то, что в ходе этого дополнительного образования в некоторых проектах авторы смогли достичь результатов, которые могут быть реально полезны для их работы. То есть они получили те знания, за которыми пришли, и эти знания сразу на практике принесут пользу.




В Центре непрерывного образования открыт набор на программы Анализ текстов (начало занятий 7 декабря 2019) и Компьютерное зрение (начало занятий 14 января 2020).