В учебном центре НИУ ВШЭ «Вороново» прошел семинар по биоинформатике
С 6 по 9 мая на базе учебного центра НИУ ВШЭ «Вороново» прошла встреча исследователей в области биологии и компьютерных наук, посвященная обсуждению актуальных задач биоинформатики. Гостями мероприятия стали аспиранты и студенты магистерской программы Анализ данных в биологии и медицине , студенты факультета биоинженерии и биоинформатики МГУ, Школы Биоинформатики, а также магистранты биотехнологического направления Сколтеха. Мероприятие организовано факультетом компьютерных наук при поддержке Сколковского института науки и технологий и Междисциплинарного научного центра Понселе. Модератором семинара выступил российский биоинформатик, доктор биологических наук профессор кафедры технологий моделирования сложных систем НИУ ВШЭ, Михаил Гельфанд.
Цель семинара — объединить исследователей, работающих в области анализа данных и биоинформатики, наметить возможные темы для совместных исследований, а также дать студентам представление о современных научных методах и возможностях их применения в конкретных задачах.
Большая часть семинара была посвящена обзору современных источников больших данных в биологии — от техник секвенирования ДНК до масс-спектрометрии, а также задачам, которые эти методы позволяют решать: определение пространственной структуры хроматина, поиск регуляторных сайтов, анализ транскриптомов, протеомов и метаболомов, исследование эпигенетических модификаций ДНК.
Валерия Ковалева, МФТИ, обсудила с участниками фолдинг ДНК, а также объяснила в чем заключается и проявляется его неслучайность. Чтобы понять это, ученые сравнивают некоторые характеристики карты контактов с различными типами случайных матриц и пытаются найти способ количественно охарактеризовать иерархию в укладке ДНК.
Иван Кулаковский, Институт молекулярной биологии РАН, прочел доклад о выявлении, вычислительном представлении и практическом применении коротких паттернов-мотивов в последовательностях ДНК, узнаваемых регуляторными белками — факторами транскрипции.
В своей второй лекции Иван осветил анализ ДНК-белкового узнавания с помощью ChIP-Seq и полногеномное предсказание сайтов связывания.
Илья Курочкин, Сколтех, выступил с докладом о масс-спектрометрии метаболитов и липидов.
Андрей Миронов, МГУ, ИППИ РАН, обсудил со студентами проблемы эпигенетики.
Вадим Назаров, аспирант МИЭМ НИУ ВШЭ, в своей лекции проработал с участниками несколько кейсов применения машинного и глубинного обучения в иммунологии, включая задачу предсказания связывания МНС-пептид комплексов и анализа репертуаров Т-клеточных рецепторов. Лекция, получившаяся своего рода введением в глубинное обучение, явилась катализатором ряда очень интересных дискуссий о применениях нейросетей как в области иммунологии, так и глобально в биоинформатике.
Дмитрий Первушин
Дмитрий Первушин, ФКН НИУ ВШЭ, Сколтех, МГУ, разобрал со слушателями методы секвенирования нового поколения.
Кирилл Половников, Сколтех, МГУ, сделал обзор пространственной структуры и динамики хроматина с точки зрения физики полимеров.
Дмитрий Светличный, научный сотрудник Сколтеха, рассказал слушателям о вычислительных методах для предсказания регуляторных элементов в геноме, основанных на поиске сайтов связывания и филогенетическом футпринтинге и подходах, базирующихся на методах машинного обучения и использовании информации о первичной последовательности ДНК и гистоновых модификаций.
Дмитрий Светличный
Сергей Ульянов, ИБГ, провел лекцию о трехмерной структуре хроматина и методах ее исследования.
Филипп Хайтович, Сколтех, прочел слушателям лекцию о протеомике — науке, изучающей белки живых организмов, их функции и взаимодействие.
Екатерина Храмеева, Сколтех, ИППИ РАН, выступила с докладом «Пространственная структура хроматина: анализ данных».
Филипп Хайтович
На мероприятии также обсуждались новейшие достижения в применении байесовских моделей, моделей на основе гауссовских процессов и глубоких нейросетей.
Евгений Бурнаев, Сколтех, ФКН НИУ ВШЭ, прочел четыре лекции: «Моделирование многообразий», «Обнаружение аномалий», «Модели на основе гауссовских процессов для регрессии и классификации», «Почему байесовские методы обнаружения сигнала в многокональной задаче лучше, чем методы на основе правдоподобия?».
В своих лекциях Бурнаев Е.В. затронул вопросы использования привилегированной информации при построении моделей машинного обучения, обнаружения аномалий в инженерных системах, вероятностного описания сложных структур данных. В ходе лекций было активное обсуждение возможности применения этих современных подходов в решении задач биоинформатики.
Евгений Бурнаев
Дмитрий Ветров, заведующий международной лабораторией глубинного обучения и байесовских методов ФКН НИУ ВШЭ, в своем докладе рассказал об основах байесовского подхода к статистике вообще, и к машинному обучению, в частности. Были разобраны прямая и двойственная постановки задач условной оптимизации, вероятностные модели с латентными переменными, масштабируемые методы машинного обучения по большим объемам данных.
Григорий Сапунов, сооснователь компании Intento, выступил с докладами: «Введение в машинное обучение» и «Введение в глубокое обучение».
Отзывы участников мероприятия:
студентка 6 курса МГУ им. М.В. Ломоносова, ФББ
Хотелось бы, чтобы оно стало традицией: в этот раз некоторые участники из разных областей плохо ориентировались и говорили на разных языках, но со временем эта ситуация должна исправиться. Особенно мне понравился формат чередования двух типов лекций: вводных теоретических и докладов о последних достижениях/результатах.
студент 5 курса МГУ им. М.В. Ломоносова, ФББ
С материалами встречи можно ознакомиться по ссылке.
Бурнаев Евгений Владимирович
Назаров Вадим Игоревич