• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Тел.: +7 (495) 772-95-90 * 12332

computerscience@hse.ru

125319, Москва, Кочновский проезд, д. 3 (недалеко от станции метро "Аэропорт"). 

 

Руководство

Декан — Аржанцев Иван Владимирович

 

Первый заместитель декана факультета — Вознесенская Тамара Васильевна

 

Заместитель декана по научной работе и международным связям — Объедков Сергей Александрович

 

Заместитель декана по административно-финансовой работе — Плисецкая Ирина Александровна

Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
100/80/15
100 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
50/10
50 платных мест
10 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/80/15
80 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/3
15 бюджетных мест
5 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Математические методы оптимизации и стохастики

2 года
Очная форма обучения
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
20/10/12
20 бюджетных мест
10 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
20/10/5
20 бюджетных мест
10 платных мест
5 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/5
20 бюджетных мест
5 платных мест
5 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
30/3
30 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Optimising the Active Muon Shield for the SHiP Experiment at CERN

A. Baranov, Derkach D., Filatov A. et al.

Journal of Physics: Conference Series. 2017. Vol. 934. No. 1. P. 12050-12054.

Статья
Sugar Lego: Gene composition of bacterial carbohydrate metabolism genomic loci

Gelfand M. S., Kaznadzey А., Shelyakin P.

Biology Direct. 2017.

Статья
On tame, pet, domestic, and miserable impartial games
В печати

Gurvich V., Nhan Bao H.

Discrete Applied Mathematics. 2018.

Статья
Additive actions on toric varieties

Arzhantsev I., Romaskevich E.

Proceedings of the American Mathematical Society. 2017. Vol. 145. No. 5. P. 1865-1879.

В учебном центре НИУ ВШЭ «Вороново» прошел семинар по биоинформатике

С 6 по 9 мая на базе учебного центра НИУ ВШЭ «Вороново» прошла встреча исследователей в области биологии и компьютерных наук, посвященная обсуждению актуальных задач биоинформатики. Гостями мероприятия стали аспиранты и студенты магистерской программы  Анализ данных в биологии и медицине , студенты факультета биоинженерии и биоинформатики МГУ, Школы Биоинформатики, а также магистранты биотехнологического направления Сколтеха. Мероприятие организовано факультетом компьютерных наук при поддержке Сколковского института науки и технологий и  Междисциплинарного научного центра Понселе. Модератором семинара выступил российский биоинформатик, доктор биологических наук профессор кафедры технологий моделирования сложных систем НИУ ВШЭ, Михаил Гельфанд.




Цель семинара — объединить исследователей, работающих в области анализа данных и биоинформатики, наметить возможные темы для совместных исследований, а также дать студентам представление о современных научных методах и возможностях их применения в конкретных задачах.

Большая часть семинара была посвящена обзору современных источников больших данных в биологии — от техник секвенирования ДНК до масс-спектрометрии, а также задачам, которые эти методы позволяют решать: определение пространственной структуры хроматина, поиск регуляторных сайтов, анализ транскриптомов, протеомов и метаболомов, исследование эпигенетических модификаций ДНК.




Валерия Ковалева, МФТИ, обсудила с участниками фолдинг ДНК, а также объяснила в чем заключается и проявляется его неслучайность. Чтобы понять это, ученые сравнивают некоторые характеристики карты контактов с различными типами случайных матриц и пытаются найти способ количественно охарактеризовать иерархию в укладке ДНК.

Иван Кулаковский, Институт молекулярной биологии РАН, прочел доклад о выявлении, вычислительном представлении и практическом применении коротких паттернов-мотивов в последовательностях ДНК, узнаваемых регуляторными белками — факторами транскрипции.
В своей второй лекции Иван осветил анализ ДНК-белкового узнавания с помощью ChIP-Seq и полногеномное предсказание сайтов связывания.

 


Илья Курочкин, Сколтех, выступил с докладом о масс-спектрометрии метаболитов и липидов.

Андрей Миронов, МГУ, ИППИ РАН, обсудил со студентами проблемы эпигенетики.

Вадим Назаров, аспирант МИЭМ НИУ ВШЭ, в своей лекции проработал с участниками несколько кейсов применения машинного и глубинного обучения в иммунологии, включая задачу предсказания связывания МНС-пептид комплексов и анализа репертуаров Т-клеточных рецепторов. Лекция, получившаяся своего рода введением в глубинное обучение, явилась катализатором ряда очень интересных дискуссий о применениях нейросетей как в области иммунологии, так и глобально в биоинформатике.

Дмитрий Первушин


Дмитрий Первушин, ФКН НИУ ВШЭ, Сколтех, МГУ, разобрал со слушателями методы секвенирования нового поколения.

Кирилл Половников, Сколтех, МГУ, сделал обзор пространственной структуры и динамики хроматина с точки зрения физики полимеров.

Дмитрий Светличный, научный сотрудник Сколтеха, рассказал слушателям о вычислительных методах для предсказания регуляторных элементов в геноме, основанных на поиске сайтов связывания и филогенетическом футпринтинге и подходах, базирующихся на методах машинного обучения и использовании информации о первичной последовательности ДНК и гистоновых модификаций.

Дмитрий Светличный


Сергей Ульянов, ИБГ, провел лекцию о трехмерной структуре хроматина и методах ее исследования.

Филипп Хайтович, Сколтех, прочел слушателям лекцию о протеомике — науке, изучающей белки живых организмов, их функции и взаимодействие.

Екатерина Храмеева, Сколтех, ИППИ РАН, выступила с докладом «Пространственная структура хроматина: анализ данных».

Филипп Хайтович


На мероприятии также обсуждались новейшие достижения в применении байесовских моделей, моделей на основе гауссовских процессов и глубоких нейросетей.

Евгений Бурнаев, Сколтех, ФКН НИУ ВШЭ, прочел четыре лекции: «Моделирование многообразий», «Обнаружение аномалий», «Модели на основе гауссовских процессов для регрессии и классификации», «Почему байесовские методы обнаружения сигнала в многокональной задаче лучше, чем методы на основе правдоподобия?».
В своих лекциях Бурнаев Е.В. затронул вопросы использования привилегированной информации при построении моделей машинного обучения, обнаружения аномалий в инженерных системах, вероятностного описания сложных структур данных. В ходе лекций было активное обсуждение возможности применения этих современных подходов в решении задач биоинформатики.

Евгений Бурнаев


Дмитрий Ветров, заведующий международной лабораторией глубинного обучения и байесовских методов ФКН НИУ ВШЭ, в своем докладе рассказал об основах байесовского подхода к статистике вообще, и к машинному обучению, в частности. Были разобраны прямая и двойственная постановки задач условной оптимизации, вероятностные модели с латентными переменными, масштабируемые методы машинного обучения по большим объемам данных.

Григорий Сапунов, сооснователь компании Intento, выступил с докладами: «Введение в машинное обучение» и «Введение в глубокое обучение».

 
Отзывы участников мероприятия:


 

Александра Галицына

студентка 6 курса МГУ им. М.В. Ломоносова, ФББ

Семинар-школа оставил меня перевернутой и вдохновленной. Кажется, это самое мотивирующее и познавательное мероприятие, в котором я участвовала за последний год. Спасибо организаторам! 
Хотелось бы, чтобы оно стало традицией: в этот раз некоторые участники из разных областей плохо ориентировались и говорили на разных языках, но со временем эта ситуация должна исправиться. Особенно мне понравился формат чередования двух типов лекций: вводных теоретических и докладов о последних достижениях/результатах. 

 

Дмитрий Медведев

студент 5 курса МГУ им. М.В. Ломоносова, ФББ

Спасибо за организацию семинара, за очень динамичную и насыщенную программу, потрясающий подбор спикеров. Было невероятно провести эти несколько дней в столь приятном и комфортном, во всех смыслах, месте. Удалось приобрести много полезной информации по применению (опыту и практике) машинного обучения к задачам в биологии и обсудить их с людьми, которые уже пробовали что-то реализовать. Буду очень ждать подобных мероприятий еще! 


С материалами встречи можно ознакомиться по ссылке.