• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 125319, г. Москва, 
Кочновский проезд, д. 3 (станция метро "Аэропорт").

Телефон: +7 (495) 772-95-90 *12332

Email: computerscience@hse.ru

 

Руководство

Декан Аржанцев Иван Владимирович

Первый заместитель декана Вознесенская Тамара Васильевна

Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович

Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич

Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна

Мероприятия
12 июня – 14 июня
submission: 1 May 2019 
17 июня – 22 июня
Ранняя регистрация: до 15 апреля Закрытие регистрации: 15 мая 
1 июля – 10 июля
Прием заявок — до 21 апреля 
26 августа – 6 сентября
Регистрация – до 12 мая 
26 августа – 30 августа
Registration and Poster Submission deadline — May 1, 2019 
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/80/15
110 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
70/12
70 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/70/15
80 бюджетных мест
70 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Branching rules related to spherical actions on flag varieties
В печати

Roman Avdeev, Petukhov A.

Algebras and Representation Theory. 2019.

Статья
Minimax theorems for American options without time-consistency

Belomestny D., Kraetschmer V., Hübner T. et al.

Finance and Stochastics. 2019. Vol. 23. P. 209-238.

Статья
Separable discrete functions: Recognition and sufficient conditions

Boros E., Cepek O., Gurvich V.

Discrete Mathematics. 2019. Vol. 342. No. 5. P. 1275-1292.

Статья
Cherenkov detectors fast simulation using neural networks

Kazeev N., Derkach D., Ratnikov F. et al.

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019.

Глава в книге
Averaging Weights Leads to Wider Optima and Better Generalization

Izmailov P., Garipov T., Подоприхин Д. А. et al.

In bk.: Proceedings of the international conference on Uncertainty in Artificial Intelligence (UAI 2018). 2018. P. 876-885.

Высшая школа экономики открывает совместную с Samsung Research лабораторию

Высшая школа экономики открывает совместную с Samsung Research лабораторию

Samsung-HSE Laboratory будет разрабатывать механизмы байесовского вывода в современных нейронных сетях, что позволит решить ряд проблем в глубинном обучении. Команду лаборатории составят сотрудники исследовательской группы байесовских методов факультета компьютерных наук НИУ ВШЭ — одной из сильнейших научных групп России в области машинного обучения и байесовского вывода. Возглавит ее профессор ВШЭ Дмитрий Ветров.

Сотрудничество Центра глубинного обучения и байесовских методов (ранее — Международная лаборатория глубинного обучения и байесовских методов) с компанией Samsung началось год назад с проекта по разработке специального метода обучения глубинных нейронных сетей, основанного на байесовском подходе. Открывающаяся совместная лаборатория НИУ ВШЭ и Samsung станет частью этого центра.

Нейронные сети и байесовские модели — две популярные парадигмы в области машинного обучения. Первые совершили настоящую революцию в области обработки больших объемов данных, дав начало новому направлению, получившему название глубинное обучение. Вторые традиционно применялись для обработки малых данных. Новый математический аппарат, разработанный в 2010 годы, позволяет конструировать масштабируемые байесовские модели. Это дает возможность применить механизмы байесовского вывода в современных нейронных сетях.

Даже первые попытки построения гибридных нейробайесовских моделей приводят к неожиданным и интересным результатам. Например, благодаря использованию байесовского вывода в нейронных сетях удается сжать сеть приблизительно в 100 раз без потери точности ее работы. С другой стороны, в самой процедуре приближенного байесовского вывода можно также использовать нейронную сеть, чтобы приблизиться к точному апостериорному распределению. Таким образом получается взаимное проникновение двух технологий.

Нейробайесовский подход потенциально может решить ряд открытых проблем в глубинном обучении: возможность катастрофического переобучения на шумы в данных, самоуверенность нейронной сети даже в ошибочных предсказаниях, неинтерпретируемость процесса принятия решения, уязвимость к враждебным атакам (adversarial attacks). Все эти проблемы осознаются научным сообществом, над их решением работают многие коллективы по всей планете, но готовых ответов пока нет.

«Samsung Electronics — один из мировых технологических лидеров. В своих разработках мы используем много моделей глубинного обучения. Но для того чтобы не отставать от конкурентов, недостаточно просто использовать готовые модели. Нужно создавать и новые технологии машинного обучения. Это тем более важно, что область глубинного обучения еще не «устоялась» и каждый год появляются все новые модели, а уже существующие быстро устаревают, — поясняет доктор Гынбэ Ли, руководитель AI Center, недавно созданного подразделения Samsung Research. — Все это означает, что человечество пока не нащупало оптимального решения для обработки больших объемов данных. Поэтому сотрудничество с ведущими научными группами в области машинного обучения и искусственного интеллекта в университетах по всему миру позволяет «держать руку на пульсе» и отслеживать самые последние достижения в области, а также получать эксклюзивный доступ к технологиям, созданным в лабораториях-партнерах».

«Решение корпорации Samsung выбрать нашу группу в качестве ключевого партнера в России, дав нам возможности сосредоточиться исключительно на фундаментальных исследованиях, — это знак признания наших научных достижений и одновременно кредит доверия, который мы постараемся полностью оправдать, — говорит руководитель совместной лаборатории и глава исследовательской группы байесовских методов ВШЭ Дмитрий Ветров. — Обычно крупные компании стараются использовать ученых для решения прикладных задач. Я рад, что наши корейские коллеги понимают всю важность исследований по разработке новых технологий, а не решения конкретных задач. Наша лаборатория будет заниматься именно созданием новых технологий, то есть самым интересным с точки зрения ученого. Наши цели полностью совпадают с пожеланиями наших партнеров, что служит залогом успешного и длительного сотрудничества».

В прошлом году Samsung создал в Корее новое подразделение — AI Center, специализирущееся на разработках в области искусственного интеллекта. В дополнение к созданию совместной лаборатории с ВШЭ в планах AI Center в этом году — открытие глобальной сети филиалов на базе исследовательских лабораторий в России, Канаде и Великобритании, что позволит усилить компетенции компании в искусственном интеллекте.

Помимо научных проектов, совместная лаборатория НИУ ВШЭ — Samsung будет активно участвовать в образовательном процессе. К работе в ней будут привлекаться и студенты, и аспиранты факультета компьютерных наук. В августе 2018 года при поддержке компании Samsung пройдет вторая летняя школа по нейробайесовским методам. На этот раз она будет проводиться на английском языке и в ней примут участие несколько ведущих ученых (Макс Веллинг, Руслан Салахутдинов). Набор на летнюю школу еще открыт.