• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 125319, г. Москва, 
Кочновский проезд, д. 3 (станция метро "Аэропорт").

Телефон: +7 (495) 772-95-90 *12332

Email: computerscience@hse.ru

 

Руководство

Декан Аржанцев Иван Владимирович

Первый заместитель декана Вознесенская Тамара Васильевна

Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович

Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич

Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна

Мероприятия
12 июня – 14 июня
submission: 1 May 2019 
17 июня – 22 июня
Ранняя регистрация: до 15 апреля Закрытие регистрации: 15 мая 
1 июля – 10 июля
Прием заявок — до 21 апреля 
26 августа – 6 сентября
Регистрация – до 12 мая 
26 августа – 30 августа
Registration and Poster Submission deadline — May 1, 2019 
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
110/80/15
110 бюджетных мест
80 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
70/12
70 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
80/70/15
80 бюджетных мест
70 платных мест
15 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Науки о данных

2 года
Очная форма обучения
55/15/6
55 бюджетных мест
15 платных мест
6 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/8
25 бюджетных мест
5 платных мест
8 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
20/5/4
20 бюджетных мест
5 платных мест
4 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/3
35 платных мест
3 платных места для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Branching rules related to spherical actions on flag varieties
В печати

Roman Avdeev, Petukhov A.

Algebras and Representation Theory. 2019.

Статья
Minimax theorems for American options without time-consistency

Belomestny D., Kraetschmer V., Hübner T. et al.

Finance and Stochastics. 2019. Vol. 23. P. 209-238.

Статья
Separable discrete functions: Recognition and sufficient conditions

Boros E., Cepek O., Gurvich V.

Discrete Mathematics. 2019. Vol. 342. No. 5. P. 1275-1292.

Статья
Cherenkov detectors fast simulation using neural networks

Kazeev N., Derkach D., Ratnikov F. et al.

Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2019.

Глава в книге
Averaging Weights Leads to Wider Optima and Better Generalization

Izmailov P., Garipov T., Подоприхин Д. А. et al.

In bk.: Proceedings of the international conference on Uncertainty in Artificial Intelligence (UAI 2018). 2018. P. 876-885.

Два доклада от ФКН представлены на международной конференции NIPS 2017

Два доклада от ФКН представлены на международной конференции NIPS 2017

NIPS

Сотрудники Факультета компьютерных наук представили свои доклады на ежегодной конференции Neural Information Processing Systems (NIPS), которая проходила с 4 по 9 декабря в Лонг Бич, США.

В этом году ФКН был представлен двумя докладами: пленарным «On Structured Prediction Theory with Calibrated Convex Surrogate Losses» доцента Департамента больших данных и информационного поиска  Антона Осокина и постерным «Structured Bayesian Pruning via Log-Normal Multiplicative Noise» от коллектива Международной лаборатории глубинного обучения и байесовских методов.

На сегодняшний день существует две крупнейшие международные конференции в области машинного обучения – Neural Information Processing Systems (NIPS) и International Conference on Machine Learning (ICML). Большинство значимых научных работ в данной сфере впервые представляются именно на этих конференциях. NIPS проводится ежегодно, начиная с 1986 года. Основными элементами программы традиционно являются лекции приглашенных гостей, пленарные выступления (15 минут) и постерные доклады. Как правило, не более 1% от поданных работ получают статус пленарных докладов. Всего в этом году из 3240 присланных было принято 678, из них только 40 были заявлены как пленарные. Кроме того, в 2017 поставлен новый рекорд по количеству участников – 7850 человек, в то время как в 2016 году их было 5600.

В отличие от большинства работ, представленных на конференции, которые носили практический характер, пленарный доклад Антона Осокина был посвящен теоретическим вопросам в одной из областей машинного обучения – структурном предсказании. В представленном им исследовании впервые три такие задачи, как consistency, сложность решения задач оптимизации и количественные характеристики сложности структуры были объединены в рамках одного формализма.

Осокин Антон Александрович

Доцент Департамента больших данных и информационного поиска


«Наша работа создает теоретическую основу для практических исследований в области структурного предсказания. Фактически мы определяем свойства задач, которые могут быть использованы для создания эффективных решений».
Не менее важную роль для эффективного решения задач играют и методы настройки нейронных сетей, применимые на практике. Использование нейронных сетей де-факто перевернуло такие области как анализ изображений и обработка естественного языка. Но у нейронных сетей есть и ряд недостатков, к примеру, сравнительно медленные и требующие много памяти алгоритмы обучения. В постерном докладе «Structured Bayesian Pruning via Log-Normal Multiplicative Noise» («Байесовский структурный прунинг нейросетей через мультипликативный Лог-Нормальный шум») сотрудников Международной лаборатории глубинного обучения и байесовских методов был представлен новый метод, позволяющий настроить нейронную сеть существенно меньшего размера без потери качества, а также ускорить модель в несколько раз. Стоит отметить, что байесовские методы для обучения разреженных моделей в машинном обучении применяли очень давно, но только недавно эти результаты удалось перенести на современные нейросетевые архитектуры.
Ветров Дмитрий Петрович

Международная лаборатория глубинного обучения и байесовских методов: Заведующий лабораторией

«Это исследование мы провели с моими аспирантами Кириллом Неклюдовым, Дмитрием Молчановым и Арсением Ашухой, которые сейчас работают исследователями в Международной лаборатории глубинного обучения и байесовских методов, созданной на ФКН в январе 2017 года.  У Кирилла, новобранца группы и первого автора статьи, это был первый опыт подготовки научной публикации на столь высоком уровне и я очень рад и горд, что ему сразу удалось достичь такого успеха. К сожалению, Кирилл и Дмитрий не смогли попасть на конференцию из-за проблем с получением американской визы».
 
Аржанцев Иван Владимирович

Декан факультета компьютерных наук

 «Два доклада от сотрудников ФКН на одной из важнейших конференций в области нейросетей и машинного обучения – это серьезное достижение. И мы гордимся нашими коллегами, чья научная экспертиза так высоко ценится международным  профессиональным сообществом».

В рамках дополнительной секции (workshop) OPT 2017: Optimization for Machine Learning с докладом выступил профессор-исследователь Департамента больших данных и информационного поиска Юрий Нестеров. Кроме того, с постерным докладом «Recycling Privileged Learning and Distribution Matching for Fairness»  выступил научный руководитель Международной лаборатории глубинного обучения и байесовских методов Нови Квадрианто. Также в дополнительных секциях выступили представители МФТИ и Яндекса.

Новость на сайте Вышки: https://www.hse.ru/science/news/213458890.html