• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Контакты

Адрес: 109028, г. Москва, Покровский бульвар, д. 11

Телефон: +7 (495) 531-00-00 *27254

Email: computerscience@hse.ru

 

Руководство
Первый заместитель декана Вознесенская Тамара Васильевна
Заместитель декана по научной работе и международному сотрудничеству Объедков Сергей Александрович
Заместитель декана по учебно-методической работе Самоненко Илья Юрьевич
Заместитель декана по развитию и административно-финансовой работе Плисецкая Ирина Александровна
Образовательные программы
Бакалаврская программа

Прикладная математика и информатика

4 года
Очная форма обучения
117/80/30
117 бюджетных мест
80 платных мест
30 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Бакалаврская программа

Программа двух дипломов НИУ ВШЭ и Лондонского университета "Прикладной анализ данных"

4 года
Очная форма обучения
80/12
80 платных мест
12 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Бакалаврская программа

Программная инженерия

4 года
Очная форма обучения
110/70/30
110 бюджетных мест
70 платных мест
30 платных мест для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Анализ данных в биологии и медицине

2 года
Очная форма обучения
20/5/1
20 бюджетных мест
5 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Магистр по наукам о данных

2 года
Заочная
100
100 платных мест
ENG
Обучение ведётся на английском языке
Магистерская программа

Науки о данных

2 года
Очная форма обучения
60/15/20
60 бюджетных мест
15 платных мест
20 платных мест для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Магистерская программа

Системная и программная инженерия

2 года
Очная форма обучения
25/5/15
25 бюджетных мест
5 платных мест
15 платных мест для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Системное программирование

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
RUS
Обучение ведётся на русском языке
Магистерская программа

Статистическая теория обучения

2 года
Очная форма обучения
15/5/2
15 бюджетных мест
5 платных мест
2 платных места для иностранцев
ENG
Обучение ведётся на английском языке
Магистерская программа

Финансовые технологии и анализ данных

2 года
Очная форма обучения
35/1
35 платных мест
1 платное место для иностранцев
RUS/ENG
Обучение ведётся на русском и английском языках
Статья
Sparse covariance matrix estimation in high-dimensional deconvolution

Belomestny D., Trabs M., Tsybakov A.

Bernoulli: a journal of mathematical statistics and probability. 2019. Vol. 25. No. 3. P. 1901-1938.

Статья
Axiomatization of provable n-provability

Beklemishev L. D., Kolmakov E.

Journal of Symbolic Logic. 2019. Vol. Volume 84. No. Issue 2. P. 849-869.

Глава в книге
ChronosDB in Action: Manage, Process, and Visualize Big Geospatial Arrays in the Cloud

Rodriges Zalipynis R. A.

In bk.: Proceedings of the ACM SIGMOD International Conference on Management of Data. NY: ACM, 2019. P. 1985-1988.

Руководитель коллаборации LHCb (CERN) выступил на семинаре LAMBDA

2 октября прошел семинар лаборатории LAMBDA по теме «Актуальные задачи физики высоких энергий и подходы машинного обучения», на котором специальный гость Giovanni Passaleva, руководитель коллаборации LHCb (CERN), представил актуальные задачи экспериментов Большого Адронного Коллайдера в целом и LHCb в частности.

Руководитель коллаборации LHCb (CERN) выступил на семинаре LAMBDA

Сотрудники лаборатории рассказали о своих текущих проектах, над которыми они работают в составе коллабораций LHCb, SHiP и CRAYFIS. Было продемонстрировано существенное улучшение качества экспериментов, достигнутое посредством внедрения машинного обучения на различных этапах анализа данных. В этих проектах были использованы такие методы как Gaussian Processes, Bayesian Optimization, Generative Adversarial Networks (GANs), Deep Networks.

Доклады перемежались оживленными обсуждениями, которые наглядно продемонстрировали актуальность и широкий простор для исследовательской деятельности на стыке компьютерных наук и физики высоких энергий. Слайды участников семинара доступны по ссылкам:

— Giovanni Passaleva,  Специфика работы Большого Адронного Коллайдера в “эпоху высокой светимости”

— Андрей Устюжанин,  О лаборатории LAMBDA

— Денис Деркач,  Использование глубинного обучения для идентификации заряженных частиц

— Федор Ратников,  Использование машинного обучения для идентификации нейтральных частиц

— Артём Филатов,  Гауссовские процессы для оптимизации конструкции эксперимента поиска темной материи

— Максим Борисяк,  Использование GANs для ускорения симуляции сложных процессов, получения реалистичных моделей откликов детекторов, поиска оптимальных параметров симуляторов


Лаборатория методов анализа больших данных предлагает студентам Вышки темы курсовых работ, которые близки к тематике семинара.